Visual enhancement of old documents with hyperspectral imaging
نویسندگان
چکیده
Hyperspectral imaging (HSI) of historical documents is becoming more common at national libraries and archives. HSI is useful for many tasks related to document conservation and management as it provides detailed quantitative measurements of the spectral reflectance of the document that is not limited to the visible spectrum. In this paper, we focus on how to use the invisible spectra, most notably near-infrared (NIR) bands, to assist in visually enhancing old documents. Specifically, we demonstrate how to use the invisible bands to improve the visual quality of text-based documents corrupted with undesired artifacts such as ink-bleed, ink-corrosion, and foxing. For documents of line drawings that suffer from low contrast, we use details found in the invisible bands to enhance legibility. The key components of our framework involve detecting regions in the document that can be enhanced by the NIR spectra, compositing the enhanced gradient map using the NIR bands, and reconstructing the final image from the composited gradients. This work is part of a collaborative effort with the Nationaal Archief of the Netherlands (NAN) and Art Innovation, a manufacturer of hyperspectral imaging hardware designed specially for historical documents. Our approach is evaluated on historical documents from NAN that exhibit degradations common to documents found in most archives and
منابع مشابه
Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملF2-A: Detection of Explosives using Hyperspectral Imaging
The focus of this project was to develop and implement detection algorithms for imaging and non-imaging spectroscopy sensing modalities to best detect and identify explosive-related threats. The proposed approach included modeling of spectral variability, signal and image enhancement, and feature extraction for target detection, and computational implementation using GPUs. The developed algorit...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملNondestructive Determination of the Total Volatile Basic Nitrogen (TVB-N) Content Using hyperspectral Imaging in Japanese Threadfin Bream (Nemipterusjaponicus) Fillet
Background and Objectives: Considering the importance of safety evaluation of fish and seafood from capture to purchase, rapid and nondestructive methods are in urgent need for seafood industry. This study aimed to assess the application of hyperspectral imaging (HSI: 430-1010 nm) for prediction of total volatile basic nitrogen (TVB-N) in Japanese-threadfin bream (Nemipterusjaponicus) fillets, ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011